Stage 6
 PROMPT sheet

6/1 Place value in numbers to 10 million

The position of the digit gives its size

	$\begin{aligned} & \stackrel{n}{\stackrel{n}{0}} \\ & \stackrel{\rightharpoonup}{\hat{2}} \end{aligned}$			$\begin{aligned} & \text { n } \\ & \stackrel{0}{0} \\ & \stackrel{3}{3} \\ & \stackrel{0}{+} \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & \text { en } \\ & \text { En } \end{aligned}$	$\underset{ \pm}{n}$	¢
1	2	3	4	5	6	7	8

Example

The value of the digit ' 1 ' is 10000000
The value of the digit ' 2 ' is 2000000
The value of the digit ' 3 ' is 300000
The value of the digit '4' is 40000

6/1 Round whole numbers

Example 1- Round 342679 to the nearest 10000

- Step 1 - Find the 'round-off digit' - 4
- Step 2 - Move one digit to the right - 2

4 or less? YES - leave 'round off digit' unchanged

- Replace following digits with zeros

ANSWER - 340000
Example 2-Round 345679 to the nearest 10000

- Step 1 - Find the 'round-off digit' - 4
- Step 2 - Move one digit to the right - 5
$\underline{5}$ or more? YES - add one to 'round off digit'
- Replace following digits with zeros

ANSWER - 350000

6/2 Negative numbers

$2>-2 \rightarrow$ We say 2 is bigger than -2
$-2<2 \rightarrow$ We say -2 is less than 2

The difference between 2 and $-2=4$ (see line)

Remember the rules:

- When subtracting go down the number line
- When adding go up the number line
- $8+-2$ is the same as $8-2=6$
- $8-+2$ is the same as $8-2=6$
- $8--2$ is the same as $8+2=10$

6/3 Multiply numbers \& estimate to check

e.g. 152×34

$$
\frac{\text { COLUMN METHOD }}{152}
$$

$$
34 x
$$

$$
608 \quad(x 4)
$$

$$
\underline{4560}(\times 30)
$$

$$
\underline{5168}
$$

6/3 Use estimates to check calculations
152×34
$\approx 150 \times 30$
≈ 4500
\approx is the symbol for
'roughly equals'

6/3 Divide numbers \& estimate to check

With a remainder also expressed as a fraction
e.g. $4928 \div 32$

BUS SHELTER METHOD

6/3 continued

With a remainder expressed as a decimal
028:8
028.8
15432.0
-30 -
132
-120
12
ANSWER - $432 \div 15=28$. 8

6/3 Use estimates to check calculations
$432 \div 15$
$\approx 450 \div 15$
≈ 30

6/4 Factors, multiples \& primes

- FACTORS are what divides exactly into a number
e.g. Factors of 12 are:

1	12
2	6
3	4

Factors of 18 are:

1	18
2	9
3	6

The common factors of $12 \& 18$ are: $1,2,3,6$,
The Highest Common Factor is: 6

- PRIME NUMBERS have only TWO factors
e.g. Factors of 7 are:

Factors of 13 are
$1 \quad 13$

So 7 and 13 are both prime numbers

- MULTIPLES are the times table answers
e.g. Multiples of 5 are:
$\begin{array}{lllll}5 & 10 & 15 & 20 & 25 \ldots . . .\end{array}$.
Multiples of 4 are:
$\begin{array}{lllll}4 & 8 & 12 & 16 & 20 \ldots\end{array}$

The Lowest Common Multiple of 5 and 4 is: 20

6/5 Order of operations

Bracket
Indices
Divide
Multiply
Do these in the order they appear Add Do these in the order they appear
Subtract
e.g. $3+\underset{\text { first }}{4 \times 6-5}=22$
first
$\underset{\text { first }}{(2+1)} \times 3=9$

6/6 Addition

- Line up the digits in the correct columns
e.g. $48 p+£ 2.84+£ 9$
0.48
$2.84 \quad)$
9.00^{+}
£12.32
111

6/6 Subtraction

- Line up the digits in the correct columns
e.g. 645-427

$$
\begin{aligned}
& H T \quad U \\
& 6^{3} 415 \\
& 4227 \\
& \hline 218
\end{aligned}-
$$

6/7 Equivalent fractions

- To simplify a fraction

Example: $\frac{27}{36}$
First find the highest common factor of the numerator and denominator - which is 9 , then divide

$$
\frac{27}{36 \div 9} \div 9=\frac{3}{4}
$$

- To change fractions to the same denominator

$$
\text { Example: } \frac{3}{4} \text { and } \frac{2}{3}
$$

Find the highest common multiple of the denominators - which is 12 , then multiply:

$$
\frac{3}{4 \times 3}^{x 3}=\frac{9}{12} \text { and } \frac{2^{x 4}}{3 \times 4}=\frac{8}{12}
$$

6/8 Add \& subtract fractions

- Make the denominators the same

e.g.	$\frac{1}{5}+\frac{7}{10}$	e.g.
$=$	$\frac{4}{5}-\frac{2}{3}$	
$=$	$=\frac{12}{10}-\frac{10}{10}$	
$=$	$\frac{9}{10}$	$=\frac{2}{15} \$ 1$

6/9 Multiply fractions

- Write 5 as $\frac{5}{1}$
- Multiply numerators \& denominators
e.g. $5 \times \frac{2}{3}$
$=\frac{5}{1} \times \frac{2}{3}$
$=\frac{10}{3}=3 \frac{1}{3}$
6/9 Divide fractions
- Write 5 as $\frac{5}{1}$
- Invert the fraction after \div sign
- Multiply numerators \& denominators

e.g.	$\frac{2}{3} \div 5$			
$=$	e.g. $\frac{4}{5} \div \frac{2}{3}$			
$=$	$=\frac{3}{10}$	\quad	5	$=\frac{3}{2}$
---:	:---			

6/10 Multiply/divide decimals by 10,100

	$\begin{aligned} & \text { n } \\ & 0 \\ & \text { en } \\ & \text { E } \end{aligned}$	$\underset{ \pm}{\underline{y}}$	$\stackrel{\text { ®̃ }}{0}$	-	$\underset{\underset{\sim}{\sim}}{\substack{\text { ¢ } \\ \underset{\sim}{n}}}$		
4	3	5	2	-	6	1	7

- To multiply by 10 , move each digit one place to the left
e.g. $35.6 \times 10=356$

- To divide by 10 , move each digit one place to the right
e.g. $35.6 \div 10=356=3.56$

Tens	Ones	\bullet	tenths	hundredths
3	5	\bullet	6	
	3	\bullet	5	6

- To multiply by 100 , move each digit 2 places to the left
- To divide by 100 , move each digit 2 places to the right

AN ALTERNATE METHOD
 Instead of moving the digits

Move the decimal point the opposite way

6/11 Multiply decimals

Step 1 - remove the decimal point
Step 2 - multiply the two numbers
Step 3 - Put the decimal back in
Example: 0.06×8
$\Rightarrow \quad 6 \times 8$
$\Rightarrow \quad 48$
=> 0.48

6/11 Divide decimals

Use the bus shelter method
Keep the decimal point in the same place
Add zeros for remainders
Example: $6.28 \div 5$
$\frac{1.256}{5} \underset{6 . .^{1} 2^{2} 8^{3} 0}{ }$

6/12 Fraction, decimal, percentage equivalents

LEARN THESE:

$$
\begin{aligned}
& \frac{1}{4}=0.25=25 \% \\
& \frac{1}{2}=0.5=50 \% \\
& \frac{3}{4}=0.75=75 \% \\
& \frac{1}{10}=0.1=10 \%
\end{aligned}
$$

- Percentage to decimal to fraction $27 \%=0.27=\frac{27}{100}$
$7 \%=0.07=\frac{7}{100}$
$70 \%=0.7=\frac{70}{100}=\frac{7}{10}$
- Decimal to percentage to fraction
$0.3=30 \%=-3$
$0.03=3 \%=\frac{\mathbf{3}^{10}}{100}$
$0.39=39 \%=\frac{39}{100}$
- Fraction to decimal to percentage
$\underline{4}=\underline{80}=80 \%=0.8$

Change to 100
0. 375
$\left.\frac{3}{8}=3 \div 8=8\right) \overline{3.0^{6} 0^{4} 0}=0.375=37.5 \%$ 8
$\underline{9}=\underline{3}=0.75=75 \%$
$\xrightarrow[7]{12}$
Cancel by 3

6/13 Fraction of quantity

- 4 means $\div 5 \times 4$

$$
5
$$

e.g. To find 4 of $£ 40$

5
$£ 40 \div 5 \times 4=£ 40$

6/13 Percentage of quantity

Use only

- $50 \%-\frac{1}{2}$
- $10 \%-\frac{1}{10}$
- 1%

100

Example: To find 35% of $£ 400$

$$
\begin{aligned}
10 \% & =£ 40 \\
20 \% & =£ 80 \\
5 \% & =£ 20 \\
35 \% & =£ 140
\end{aligned}
$$

6/14 Similar shapes

When a shape is enlarged by a scale factor the two shapes are called SIMILAR shapes

Scale factor $=6 \div 3=2$
Length $a=5 \times 2=10 \mathrm{~cm}$
Length $b=8 \div 2=4 \mathrm{~cm}$

6/14 Unequal sharing

Example- unequal sharing of sweets
\(\left.\begin{array}{ll}\quad A gets \& B gets

3 shares \& 4 shares

\Rightarrow 3 sweets

\Rightarrow 12 sweets\end{array}\right) \times\)| 4 sweets |
| :--- |
| |
| |
| 16 sweets |$>\times 4$

B gets
4 shares 16 sweets $2 \mathrm{~s} \times 4$

6/15 Express missing numbers

 algebraicallyAn unknown number is given a letter

Examples

$2 a-4=8$
$2 a=12$ so $a=6$

6/15 Use a word formula

Example: - Time to cook a turkey
Cook for 45 min per kg weight
Then a further 45 min
For a 6 kg turkey, follow the formula:
$45 \min \times 6+45$ min
$=270 \mathrm{~min}+45 \mathrm{~min}$
$=315 \mathrm{~min}$
$=5 \mathrm{~h} 15 \mathrm{~min}$

6/16 Number sequences

- Understand position and term

Position	1	2	3	4	
Term	3	8	7	11	15
+4					

Term to term rule $=+4$
Position to term rule is $\times 4-1$
(because position 1×4-1=3)
nth term $=n \times 4-1=4 n-1$

- Generate terms of a sequence

If the nth term is $5 n+1$
$1^{\text {st }} \operatorname{term}(n=1)=5 \times 1+1=6$
$2^{\text {nd }} \operatorname{term}(n=2)=5 \times 2+1=11$
$3^{\text {rd }} \operatorname{term}(n=3)=5 \times 3+1=16$

6/17 Possible solutions of a number sentence

Example: x and y are numbers
Rule: $x+y=5$
Possible solutions: $x=0$ and $y=5$

$$
\begin{aligned}
& x=1 \text { and } y=4 \\
& x=2 \text { and } y=3 \\
& x=3 \text { and } y=2 \\
& x=4 \text { and } y=1 \\
& x=5 \text { and } y=0
\end{aligned}
$$

6/18 Convert units of measure METRIC

When converting measurements follow these rules:

- When converting from a larger unit to a smaller unit we multiply (x)
- When converting from a smaller unit to a larger unit we divide (\div)

UNITS of LENGTH
$10 \mathrm{~mm}=1 \mathrm{~cm}$
$100 \mathrm{~cm}=1 \mathrm{~m}$
$1000 \mathrm{~m}=1 \mathrm{~km}$

> | UNITS of MASS |
| :--- |
| $1000 \mathrm{~g}=1 \mathrm{~kg}$ |
| $1000 \mathrm{~kg}=1$ tonne |

UNITS of TIME
$60 \mathrm{sec}=1 \mathrm{~min}$
60 min $=1$ hour
$24 \mathrm{~h}=1$ day 365days $=1$ year
UNITS of VOLUME
$1000 \mathrm{ml}=1$ litre
$100 \mathrm{cl}=1$ litre

6/19 Convert units of measure METRIC/IMPERIAL

LEARN: 5 miles $=8 \mathrm{~km}$

6/20 Perimeter and area of shapes

Shapes can have the SAME area but different perimeters

The area of each shape is 9 squares

							B		
		A							
		C							

Perimeter of each shape is different
A-12; B-14; C-16

6/21 Area of parallelogram \& triangle

- Area of parallelogram

Area of parallelogram $=b \times h$

$$
\begin{aligned}
& =8 \times 5 \\
& =40 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of triangle ($\frac{1}{2}$ a parallelogram)
Area of triangle $=\frac{b \times h}{2}$

$$
=\frac{8 \times 5}{2}
$$

$$
20 \mathrm{~cm}^{2}
$$

6/22 Volume

- Volume of cuboid

Volume $=1 \times w \times h$

$$
\begin{aligned}
& =5 \times 3 \times 2 \\
& =30 \mathrm{~cm}^{3}
\end{aligned}
$$

- Volume of cube

Volume $=1 \times w \times h$

$$
\begin{aligned}
& =3 \times 3 \times 3 \\
& =27 \mathrm{~m}^{3}
\end{aligned}
$$

6/23 Construct 2D shapes

Example: Triangle with side and angles given

- Draw line $A B=7 \mathrm{~cm}$
- Draw angle 34° at point A from line $A B$
- Draw angle 47° at point B from line $A B$
- Extend to intersect the lines at C

6/23 Construct 3D shapes

CUBE \& its ne \dagger

CUBOID \& its net

TRIANGULAR PRISM \& its ne \dagger

6/24 Properties of shapes

TRIANGLES - sum of angles $=180^{\circ}$

ISOSCELES triangle
2 equal sides \& 2 equal angles

EQUILATERAL triangle 3 equal sides \& ALL angles 60°

QUADRILATERALS - sum of angles $=360^{\circ}$

REGULAR POLGONS - all sides the same

- Polygons have straight sides
- Polygons are named by the number sides

3 sides - triangle
4 sides - quadrilateral
5 sides - pentagon
6 sides - hexagon
7 sides - heptagon
8 sides - octagon
9 sides - nonagon 10 sides - decagon

Sum of exterior angles is always 360°

- interior \& exterior angle add up to 180°
- the interior angles add up to:

Triangle $=1 \times 180^{\circ}=180^{\circ}$
Quadrilateral $=2 \times 180^{\circ}=360^{\circ}$
Pentagon $=3 \times 180^{\circ}=540^{\circ}$
Hexagon $=4 \times 180^{\circ}=720^{\circ}$ etc

6/25 Parts of a circle

- The circumference is the distance all the way around a circle.
- The diameter is the distance right across the middle of the circle, passing through the centre.
- The radius is the distance halfway across the circle.
- The radius is always half the length of the diameter. $(d=2 \times r)$ or $\left(r=\frac{1}{2} \times d\right)$

6/26 Angles and straight lines

- Angles on a straight line add up to 180°

$$
148^{\circ}+32^{\circ}=180^{\circ}
$$

- Angles about a point add up to 360°

$$
146^{\circ}+90^{\circ}+124^{\circ}=360^{\circ}
$$

- Vertically opposite angles are equal

6/27 Position on a co-ordinate grid

6/28 Transformations

- Translation -A shape moved along a line

Example - Move shape A 3 right \& 4 down Can also be written as a vector 3 Right -4 Down

Notice:

- The new shape stays the same way up
- The new shape is the same size
- Reflect a shape in x-axis

- Reflect a shape in y-axis

6/29 Graphs

- Pie chart

Transport	Frequency	Angle
Car	13	$13 \times 9=117^{0}$
Bus	4	$4 \times 9=36^{\circ}$
Walk	15	$15 \times 9=135$
Cycle	8	$8 \times 9=72$

Total frequency $=40$

$$
360^{\circ} \div 40=9^{\circ} \text { per person }
$$

- Line graph

Line graphs show changes in a single variable - in this graph changes in temperature can be observed.

6/30 The mean

The mean is usually known as the average.
The mean is not a value from the original list. It is a typical value of a set of data

Mean $=$ total of measures \div no. of measures
e.g.- Find mean speed of 6 cars travelling on a road Car 1-66mph
Car 2-57mph
Car 3-71mph
Car 4-54mph
Car 5-69mph
Car 6-58mph

Mean $=\underline{66+57+71+54+69+58}$
6
$=\underline{375}$
$=62.5 \mathrm{mph}$
Mean average speed was 62.5 mph

