Year 4

4/1 Count in multiples

Now you must learn these multiples

Multiples of 6	Multiples of 7	Multiples of 9	Multiples of 25
6	7	9	25
12	14	18	50
18	21	27	75
24	28	36	100
30	35	45	125
36	42	54	150
42	49	63	175
48	56	72	200
54	63	81	225
60	70	90	250

4/2 Find 1000 more or less

To increase or decrease by 1000 this is the digit that changes.

4/2 Round to nearest 10, 100, 1000,

Example 1- Round 4279 to the nearest 1000

- Step 1 - Find the 'round-off digit' - 4
- Step 2-Look one digit to the right of 4-2

5 or more? NO - leave 'round off digit' unchanged

- Replace following digits with zeros

ANSWER - 4000

Example 2- Round 4279to the nearest 10

- Step 1 - Find the 'round-off digit' - 7
- Step 2-Look one digit to the right of 7-9

5 or more? YES - Add one to the 'round off digit'

- Replace following digits with zeros

ANSWER-4280

4/3 Negative numbers

Negative numbers are numbers BELOW ZERO

Think of a number line

- Horizontal number line

- Vertical number line

4/4 Place value

4/5 Roman Numerals to 100

The numbers 1-100 are constructed from these:
$I=1$
$V=5$
$X=10$
$L=50$
$c=100$

I	1	XXVI	26	LI	51	LXXVI	76
II	2	XXVII	27	LII	52	LXXVII	77
III	3	XXVIII	28	LIII	53	LXXVIII	78
IV	4	XXIX	29	LIV	54	LXXIX	79
V	5	XXX	30	LV	55	LXXX	80
VI	6	XXXI	31	LVI	56	LXXXI	81
VII	7	XXXII	32	LVII	57	LXXXII	82
VIII	8	8XXIII	33	LVIII	58	LXXXIII	83
IX	9	XXXIV	34	LIX	59	LXXXIV	84
X	10	XXXV	35	LX	60	LXXXY	85
XI	11	XXXVI	36	LXI	61	LXXXVI	86
XII	12	XXXVII	37	LXII	62	LXXXVII	87
XIII	13	XXXVIII	38	LXIII	63	LXXXVIII	88
XIV	14	XXXIX	39	LXIV	64	LXXXIX	89
XV	15	XL	40	LXV	65	XC	90
XVI	16	XLI	41	LXVI	66	XCI	91
XVII	17	XLII	42	LXVII	67	XCII	92
XVIII	18	XLIII	43	LXVIII	68	XCIII	93
XIX	19	XLIV	44	LXIX	69	XCIV	94
XX	20	XLV	45	LXX	70	XCV	95
XXI	21	XLVI	46	LXXI	71	XCVI	96
XXII	22	XLVII	47	LXXII	72	XCVII	97
8XIII	23	XLVIII	48	LXXIII	73	XCVIII	98
XXIV	24	XLIX	49	LXXIV	74	XCIX	99
XXV	25	L	50	LXXV	75	c	100

4/6 Add \& subtract

- Line up digits from right to left Example 1: Add 4735 and 386

| 4735 |
| :--- | :--- |
| 386 |
| 5121 |$+4735$

Example 2: Subtract 637 from 2476 $\&^{11} 4 \nabla^{61} 6 \quad 2{ }^{14} 7^{1} 6$
637 -
$16 \quad 37-$
1839

4/7 Estimate a calculation

- Round off each number so that the calculation is easy to do
Example 1: $\quad 644 \times 11$
To make it easy use:

$$
600 \times 11=6600 \text { or } 600 \times 10=6000
$$

Example 2: $503.926+709.328$
To make it easy use:

$$
500+700=1200
$$

Example 3: Half of 51.4328963
To make it easy use:

$$
\text { Half of } 50=25
$$

Example 3: 806-209
To make it easy use:

$$
800-200=600
$$

4/8 Addition \& subtraction problems (Based upon 4/6)

Words associated with subtraction:

4/9 Multiplication tables

Times Table - 12×12												
	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

Remember:

$7 \times 8=56 \quad 8 \times 7=56 \quad 56 \div 7=8 \quad 56 \div 8=7$

4/10 Factor pairs

The number 12 can be made from these factor pairs

	1×12
3	$\times 6$
4	$\times 4$
From these	
factor pairs we	
	$\times 3$
can see that	
	6×2
12×1	12 are: $1,2,3$,
	$4,6,12$

4/11 Multiply by a single digit number

Example: 342×7

342	342	$300 \times 7=2100$
$\frac{7}{2394}$	$\frac{217}{21}$	$\underline{2394}$
$40 \times 7=280$		
$\frac{2 \times 7}{242}=\underline{14}$		
$\underline{242 \times 7}=\underline{2394}$		

4/12 Connections between 2 calculations

Look for connections between the 2 calculations

Example: We know $342 \times 7=2394$ (See above)

So we also know $342 \times 14=4788$

Example: We know $342 \times 7=2394$ (See above)

So we also know $684 \times 7=4788$

Example: We know $342 \times 7=2394$ (See above)

So we also know $342 \times 8=2394+(342 \times 1)$

$$
=2736
$$

4/13 Common equivalent fractions

- The same fraction can be expressed in different ways
ALL THESE ARE $\frac{1}{2}$

ALL THESE ARE $\underline{3}$

4/14 Hundredths

- This represents 4 hundredths $=\frac{4}{100}$
- To find a hundredth of an object or quantity you divide by 100

4/14 Counting in hundredths (continued)

$0=6.63$
$P=6.66$
$Q=6.72$
$R=6.77$

4/15 Add \& subtract fractions

- To add and subtract fractions

When the dengminators are the same

$\frac{5}{8}-\frac{1}{8}=\frac{4}{8}$

4/16 Decimal equivalents

4/16 Decimal equivalents

Others to learn are:

$$
\frac{1}{4}=0.25 \quad \frac{1}{2}=0.5 \quad \frac{3}{4}=0.75
$$

4/17 Effect of dividing by 10 and 100

- To divide by 10 , move each digit one place to the right
e.g. $35 \div 10=3.5$

- To divide by 100 , move each digit 2 places to the right
e.g. $35 \div 100=0.35$
(we add a zero to show there are no whole numbers)

Tens	Ones	\bullet	tenths	hundredths
3	5	\bullet		
	0	\bullet	\rightarrow	

4/18 Round decimals to nearest whole

The Rules:

- If the digit behind the decimal point is LESS THAN 5, the number is rounded DOWN to the next whole number
Example: 6.4 becomes rounded to 6
- If the digit behind the decimal point is 5 OR MORE, the number is rounded UP to the next whole number
Example: $\quad 6.5$ becomes rounded to 7
6.8 becomes rounded to 7

4/19 Convert between units of measure

- Time

- Length

- Mass or weight

- Capacity or volume

4/20 Perimeter \& area by counting

- Perimeter is round the OUTSIDE Perimeter of this shape $=12 \mathrm{~cm}$

- Area is the number of squares INSIDE Area of this shape $=5 \mathrm{~cm}^{2}$

4/21 Estimate measures

- Capacity

a 330 ml can of drink

an average bucket holds 10 litres

4/21 Estimate measures - continued

- Mass

this apple weighs 125 g

this bag of sugar weighs 1 kg

- Length
this pencil is 17 cm long

length of classroom is 10 m

4/22 12- and 24-hour clock

MORNING in 24-Hour Clock											
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100
$\begin{gathered} \text { 12:00am } \\ \text { (midnight) } \end{gathered}$	1:00am	2:00am	3:00am	4:00am	5:00am	6:00am	7:00am	8:00am	9:00am	10:00am	11:00am
MORNING in 12-Hour Clock											
AFTERNOON in 24-Hour Clock											
1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
$\begin{aligned} & \text { 12:00pm } \\ & \text { (midday) } \end{aligned}$	1:00pm	2:00pm	3:00pm	4:00pm	5:00pm	6:00pm	7:00pm	8:00pm	9:00pm	10:00pm	11:00pm

AFTERNOON in 12-Hour Clock

4/23 - Properties of quadrilaterals \& triangles

TRIANGLES - angles add up to 180°

Isosceles triangle

- 2 equal sides
- 2 equal angles
- 1 line of symmetry
- No rotational symmetry

Equilateral triangle

- 3 equal sides
- 3 equal angles -60°
- 3 lines of symmetry
- Rotational symmetry order 3

QUADRILATERALS - all angles add up to 360°

Square

- 4 equal sides
- 4 equal angles -90°
- 4 lines of symmetry
- Rotational symmetry order 4

Rectangle

- Opposite sides equal
- 4 equal angles - 90°
- 2 lines of symmetry
- Rotational symmetry order 2

Parallelogram

- Opposite sides parallel
- Opposite angles equal
- NO lines of symmetry
- Rotational symmetry order 2

Rhombus (like a diamond)

- Opposite sides parallel
- Opposite angles equal
- 2 lines of symmetry
- Rotational symmetry order 2

4/23 - Properties of quadrilaterals \& Triangles (continued)

Trapezium

- ONE pair opposite sides parallel

Kite

- One pair of opposite angles equal
- 2 pairs of adjacent sides equal
- ONE line of symmetry
- No rotational symmetry

4/24 Types of angles

Straight line
(180° or two right angles)

4/25 Identify lines of symmetry

- Horizontal line of symmetry

- Vertical line of symmetry

- Oblique line of symmetry

- Horizontal, Vertical \& Oblique lines of symmetry

4/26 Complete a symmetrical figure

- Tracing paper is brilliant for this

4/27 Describe position of points

- The horizontal axis is the x-axis
- The vertical axis is called the y-axis
- The origin is where the axes meet
- A point is described by two numbers The $1^{s t}$ number is off the x-axis The $2^{\text {nd }}$ number is off the y-axis

4/27 Describe movement of shapes

Shape A has been moved 3 squares right and 2 down.
This movement is called TRANSLATION

4/28 Complete a 2D shape

Example: Draw on lines to complete parallelogram

4/29 Present discrete \& continuous data

Discrete data is counted
e.g. cars, students, animals

Graph to show favourite colours in Class 4

4/29 Present discrete \& continuous data

Continuous data is measured
e.g. heights, times, temperature

Graph to show a patient's temperature over 24h

4/30 Compare data in graphs

'Sum' or 'total' means 'add up'
'Difference' or 'how many more' means 'subtract'

Bar chart to show Number of Ice Creams sold in a week

(i) What is the total number of ice creams sold over the weekend?

Answer: $37+30=67$
(ii) How many more were sold on Friday than Saturday?

Answer: 61-37=24

Pictogram to show the number of pizzas eaten by four friends in the past month:

Key:

$=4$ pizzas

Alan

Bob

Chris

Dave

(i) What is the sum of the number of pizzas eaten in the month

Answer: $6+9+19+12=46$
(ii) Find the difference in the number eaten by Chris and Bob

Answer: 19-9 = 10

